Haplogroup R, the ancestral clade to R1 and R2, appeared on the Central Asian Steppes around 35,000 to 30,000 years ago. R1, sister clade to R2, moved to the West from the Central Asian Steppes around 35,000 to 30,000 years ago. R1 pockets were established, from where R1a and R1b emerged.
R2a [R-M124] made its first entry into the Indian sub-continent around 25,000 years ago. The routes taken are not clear, although the Indus and Ganges rivers are possible theories put forward. There could, of course, have been multiple immigrations of this haplogroup into the Indian sub-continent, both in the Paleolithic and the Neolithic.
At least 90% of R-M124 individuals are located in the Indian sub-continent. It is also reported in Caucasus and Central Asia.
Haplogroup R2a is present both in Dravidian and other Indian populations, meaning that R2a has a pan-Indian presence, and not restricted to any linguistic group.
Haplogroup R2a has a more significant presence in middle and upper castes. The frequencies of R2a seem to mirror the frequencies of R1a (i.e. both lineages are strong and weak in the same social and linguistic subgroups). This may indicate that both R1a and R2a moved into India at roughly the same time or cohabited, although more research is needed.
R1a1 and R2a haplogroups indicate demographic complexity that is inconsistent with a recent single history and is not inconsistent with a more proximal Central Asian input of the R2a haplogroup in the upper castes. R2a has a particularly strong presence in the Indian states of West Bengal, Uttar Pradesh and Gujarat, and in the area of Mumbai (Bombay).
The paper claims that there is no evidence that Central Asia was the source of the R1a and R2a lineages in India. The theory that Central Asia could have been the recipient of the two lineages from India should not be ruled out. (Mike comment: The Dravidian Albinos moving to Central Asia from India accounts for this). In addition, the data are not inconsistent with complex exchanges of this haplogroup between Central Asia and the Indian sub-continent, with the latter being both the source and the recipient at different times.
Posted by Mike111 (Member # 9361) on :
Haplogroup R1 is fairly common throughout Europe, South Asia and Central Asia. It also occurs in Africa, Near East and Native americans from North America. Low frequencies in Siberia, Malay Archipelago and Indigenous Australians. Eurasia
R1 is very common throughout all of Eurasia except East Asia and Southeast Asia. Its distribution is believed to be associated with the re-settlement of Eurasia following the last glacial maximum. Its main subgroups are R1a (M420) and R1b (M343). One subclade of haplogroup R1b (especially R1b1a2, R-M269), is the most common haplogroup in Western Europe and Bashkortostan, while another R1a (especially R1a1a, R-M17 or R-M98) is the most common haplogroup in large parts of South Asia, Eastern Europe, Central Asia, Western China, and South Siberia.
Individuals whose Y-chromosomes possess all the mutations on internal nodes of the Y-DNA tree down to and including M207 (which defines Haplogroup R) but which display neither the M173 mutation that defines Haplogroup R1 nor the M479 mutation that defines Haplogroup R2 are categorised as belonging to group R*. Haplogroup R* has been found in 10.3% (10/97) of a sample of Burusho and 6.8% (3/44) of a sample of Kalash from northern Pakistan. Americas
In Indigenous Americans groups, R1 is the most common haplogroup after Q, especially in North America in Ojibwe people at 79%, Chipewyan 62%, Seminole 50%, Cherokee 47%, Dogrib 40% and Papago 38%.
Africa
One isolated clade (or clades) of Y chromosomes that appear to belong to Haplogroup R1b1* (P25-derived) is found at high frequency among the native populations of northern Cameroon, such as the Kirdi, in west-central Africa, which is believed to reflect a prehistoric back-migration of an ancient proto-Eurasian population into Africa.
R1a and R1a1a are believed to have originated somewhere within Eurasia, most likely in the area from Eastern Europe to South Asia. Several recent studies have proposed that South Asia is the most likely region of origin. But on the other hand, as will be discussed below, some researchers continue to treat modern Indian R1a as being largely due to immigration from the Central Eurasian steppes or Southwestern Asia.
R1a has been found in high frequency at both the eastern and western ends of its core range, for example in India and Tajikistan on the one hand, and Poland on the other. Throughout all of these regions, R1a is dominated by the R1a1a (R-M17 or R-M198) sub-clade.
In South Asia R1a1a has often been observed with high frequency in a number of demographic groups. The main two subclades of R1a1a are R1a1a* and R1a1a7. R1a1a7 is positive for M458 an SNP that separate it from the rest of R1a1a. It is significant because M458 is a European marker and the epicenter is Poland. M458 marker is rare in India.
In India, high percentage of this haplogroup is observed in West Bengal Brahmins (72%) to the east, Konkanastha Brahmins (48%) to the west, Khatris (67%) in north and Iyenger Brahmins (31%) of south. It has also been found in several South Indian Dravidian-speaking Adivasis including the Chenchu (26%) and the Valmikis of Andhra Pradesh and the Kallar of Tamil Nadu suggesting that M17 is widespread in Tribal Southern Indians.
Besides these, studies show high percentages in regionally diverse groups such as Manipuris (50%) to the extreme North East and in Punjab (47%) to the extreme North West.
In Pakistan it is found at 71% among the Mohanna tribe in Sindh province to the south and 46% among the Baltis of Gilgit-Baltistan to the north. While 13% of Sinhalese of Sri Lanka were found to be R1a1a (R-M17) positive.
Hindus of Terai region of Nepal show it at 69%.
In Afghanistan, R1a1a (R-M17) is found at 51.02% among the Pashtuns (the largest ethnic group in Afghanistan) and 30.36% among the Tajiks, but it is less frequent among the Hazaras (6.67%) and the Turkic-speaking Uzbeks (17.65%).
Posted by Mike111 (Member # 9361) on :
Europe
R1a1 among others European haplogrupes
In Europe, R1a, again almost entirely in the R1a1a sub-clade, is found at highest levels among peoples of Eastern European descent (Sorbs, Poles, Russians and Ukrainians; 50 to 65%). In the Baltic countries R1a frequencies decrease from Lithuania (45%) to Estonia (around 30%). Levels in Hungarians have been noted between 20 and 60%.
There is a significant presence in peoples of Scandinavian descent, with highest levels in Norway and Iceland, where between 20 and 30% of men are in R1a1a. Vikings and Normans may have also carried the R1a1a lineage westward; accounting for at least part of the small presence in the British Isles. In East Germany, where Haplogroup R1a reaches a peak frequency in Rostock at a percentage of 31.3%, it averages between 20%-30%.
Haplogroup R1a1a was found at elevated levels amongst a sample of the Israeli population who self-designated themselves as Ashkenazi Jews, possibly reflecting gene flow into Ashkenazi populations from surrounding Eastern European populations, over a course of centuries. This haplogroup finding was apparently consistent with the latest SNP microarray analysis which argued that up to 55 percent of the modern Ashkenazi genome is specifically traceable to Europe. Ashkenazim were found to have a significantly higher frequency of the R-M17 haplogroup Behar reported R-M17 to be the dominant haplogroup in Ashkenazi Levites (52%), although rare in Ashkenazi Cohanim (1.3%) and Israelites (4%).
In Southern Europe R1a1a is not common amongst the general population, but it is widespread in certain areas. Significant levels have been found in pockets, such as in the Pas Valley in Northern Spain, areas of Venice, and Calabria in Italy. The Balkans shows lower frequencies, and significant variation between areas, for example greater than 30% in Slovenia, Croatia and Greek Macedonia, but less than 10% in Albania, Kosovo and parts of Greece.
The remains of a father and his two sons, from an archaeological site discovered in 2005 near Eulau (in Saxony-Anhalt, Germany) and dated to about 2600 BCE, tested positive for the Y-SNP marker SRY10831.2. The R1a1 clade was thus present in Europe at least 4600 years ago, in association with one site of the widespread Corded Ware culture.
Father was Y-dna R1a
Posted by Mike111 (Member # 9361) on :
Central and Northern Asia
R1a1a frequencies are patchy in Central Asia. This variation is possibly a consequence of population bottlenecks in isolated areas and the movements of Scythians in ancient times and later the Turco-Mongols.
High frequencies of R1a1a (R-M17 or R-M198; 50 to 70%) are found among the Ishkashimis, Khujand Tajiks, Panjakent Tajiks, Turkic-speaking Kyrgyzs, and in several peoples of Russia's Altai Republic, but frequencies are relatively lower (16 to 25%) among the Dushanbe Tajiks, Samarkand Tajiks, Yaghnobis and Shughnis.
Although levels are comparatively low amongst some Turkic-speaking groups (e.g. Turks, Azeris, Kazakhs, Yakuts), levels are high (19 to 28%) in certain Turkic or Mongolic-speaking groups of Northwestern China, such as the Bonan, Dongxiang, Salar, and Uyghurs.
In Eastern Siberia, R1a1a is found among certain indigenous ethnic groups including Kamchatkans and Chukotkans, and peaking in Itel'man at 22%. Middle East and Caucasus
R1a1a has been found in various forms, in most parts of Western Asia, in widely varying concentrations, from almost no presence in areas such as Jordan, to much higher levels in parts of Kuwait, Turkey and Iran.
Kuwait
The Shimar (Shammar) Bedouin tribe in Kuwait show the highest frequency in the Middle East at 43%.
Wells et al. (2001), noted that in the western part of the country, Iranians show low R1a1a levels, while males of eastern parts of Iran carried up to 35% R1a. Nasidze et al. (2004) found R1a in approximately 20% of Iranian males from the cities of Tehran and Isfahan. Regueiro et al. (2006), in a study of Iran, noted much higher frequencies in the south than the north.
Turkey also shows high but unevenly distributed R1a levels amongst some sub-populations. For example Nasidze et al. (2005) found relatively high levels amongst two Kurdish groups of Turkey, the Kurmanji (13%) and Zazaki (26%).
Further to the north of these Middle Eastern regions on the other hand, R1a levels start to increase in the Caucasus, once again in an uneven way. Several populations studied have shown no sign of R1a, while highest levels so far discovered in the region appears to belong to speakers of the Karachay-Balkar language amongst whom about one quarter of men tested so far are in haplogroup R1a1a.
Posted by Mike111 (Member # 9361) on :
R1b
Possible place of origin Southwest Asia Ancestor R1 Descendants R1b1a (R-P297), R1b1b (R-M335), R1b1c (R-V88) Defining mutations 1. M343 defines R1b in the broadest sense P25 defines R1b1, making up most of R1b, and is often used to test for R1b In some cases, major downstream mutations such as M269 are used to identify R1b, especially in regional or out-of-date studies Highest frequencies Western Europe, Northern Cameroon, Hazara, Bashkirs.
In human genetics, Haplogroup R1b is the most frequently occurring Y-chromosome haplogroup in Western Europe, parts of central Eurasia (for example Bashkortostan), and in parts of sub-Saharan Central Africa (for example around Chad and Cameroon). R1b is also present at lower frequencies throughout Eastern Europe, Western Asia, Central Asia, and parts of South Asia and North Africa. Due to European emigration it also reaches high frequencies in the Americas and Australia. While Western Europe is dominated by the R1b1a2 (R-M269) branch of R1b, the Chadic-speaking area in Africa is dominated by the branch known as R1b1c (R-V88). These represent two very successful "twigs" on a much bigger "family tree."
Cameroon
R1b1c is found in northern Cameroon in west central Africa at a very high frequency, where it is considered to be caused by a pre-Islamic movement of people from Eurasia.
Suggestive results from other studies which did not test for the full range of new markers discovered by Cruciani et al. have also been reported, which might be in R-V88.
Wood et al. reported high frequencies of men who were P25 positive and M269 negative, amongst the same north Cameroon area where Cruciani et al. reported high R-V88 levels. However they also found such cases amongst 3% (1/32) of Fante from Ghana, 9% (1/11) of Bassa from southern Cameroon, 4% (1/24) of Herero from Namibia, 5% (1/22) of Ambo from Namibia, 4% (4/92) of Egyptians, and 4% (1/28) of Tunisians.
Luis et al. found the following cases of men M173 positive (R1), but negative for M73 (R1b1b1), M269 (R1b1b2), M18 (R1b1a1, a clade with V88, M18 having been discovered before V88) and M17 (R1a1a): 1 of 121 Omanis, 3 of 147 Egyptians, 2 of 14 Bantu from southern Cameroon, and 1 of 69 Hutu from Rwanda. Pereira et al.
Posted by Mike111 (Member # 9361) on :
Niger
(2010) In a study of several Saharan Tuareg populations, found one third of 31 men tested from near Tanut in Niger to be in R1b.
Historical note
The DNA tests that assisted in the identification of Czar Nicholas II of Russia found that he had haplogroup R1b.
Posted by Mike111 (Member # 9361) on :
These three sisters all have the EXACT same haplogroup. The only difference is that the one in the middle has a damaged "P" gene.
Posted by Mike111 (Member # 9361) on :
These two brothers have the EXACT same haplogroup. The only difference is that the one on the right has a damaged "P" gene.
Posted by Mike111 (Member # 9361) on :
This brother and his two sisters all have the EXACT same haplogroup. The only difference is that the one in the middle has a Undamaged "P" gene.
Posted by Mike111 (Member # 9361) on :
OCA2 “oculocutaneous albinism II.”
What is the official name of the OCA2 gene?
The official name of this gene is “oculocutaneous albinism II.”
OCA2 is the gene's official symbol. The OCA2 gene is also known by other names, listed below.
Read more about gene names and symbols on the About page. What is the normal function of the OCA2 gene?
The OCA2 gene (formerly called the P gene) provides instructions for making a protein called the P protein. This protein is located in melanocytes, which are specialized cells that produce a pigment called melanin. Melanin is the substance that gives skin, hair, and eyes their color. Melanin is also found in the light-sensitive tissue at the back of the eye (the retina), where it plays a role in normal vision.
Although the exact function of the P protein is unknown, it is essential for normal pigmentation and is likely involved in the production of melanin. Within melanocytes, the P protein may transport molecules into and out of structures called melanosomes (where melanin is produced). Researchers believe that this protein may also help regulate the relative acidity (pH) of melanosomes. Tight control of pH is necessary for most biological processes.
Posted by Mike111 (Member # 9361) on :
There is only one way where these two men could be in the same genetic group.
One of them "MUST" have a damaged "P" gene! Posted by Mike111 (Member # 9361) on :
Doxie dear, are you starting to understand?
Posted by DHDoxies (Member # 19701) on :
Funny Mike none of those people have any features in common with Czar Nicholas or the one White girl you posted. Also once again do NOT call me Doxie as you are not a friend but are the ENEMY oh hater of White people. Also I'm NOT your dear I'm your worse nightmare LOL.
Posted by Mike111 (Member # 9361) on :
Doxie dear, I drew your attention to it because it proves two things that you have always denied:
1) Whites are from Central Asia.
2) White people are merely the Albinos of Black people.
As to your point about them not looking exactly alike, well that's silly.
By now, you know as well as I, that I can find Black people with every feature that a White person has. The nonsense about European exclusivity in appearance, is just that - nonsense!
Posted by DHDoxies (Member # 19701) on :
Mike just how the heck does your post prove anything? Why must you always try to twist words,etc just to further your Anti-White hatred?
Posted by mena7 (Member # 20555) on :
It is very sad that black people lost control of the world to their albino children. It is sad that black people the original people on earth let albino people write the history of the world. The world is upside down.
Posted by Mike111 (Member # 9361) on :